Fashion Retail сегодня: тенденции развития и нерешенные проблемы

Игорь Бахарев

Онлайн-магазины одежды и обуви — одно из самых развитых на сегодня направлений e-commerce. В США уступает только магазинам гаджетов.

Вдобавок это еще и одно из самых интересных направлений в плане его маркетингового продвижения. Тут работает принцип: чем эмоциональнее товар, тем изощреннее может быть коммуникация с потребителем. Поэтому модные онлайн-магазины то и дело вводят новшества, обрастают инновационными сервисами, экспериментируют с технологиями и персонализацией — лишь бы быть ближе к своему пользователю.

Специально для тех, кто связан с электронной коммерцией в сфере моды, мы подготовили исчерпывающий список последних веяний. А чтобы жизнь не казалась сахаром — список открытых вопросов и больных мест онлайн-ритейла в сегменте fashion.

Статья будет интересна вообще всем из сферы e-commerce, так как магазины одежды — трендсеттеры, вестники технического прогресса в электронной торговле. Жизнь заставляет их быть таковыми.

Сначала о хорошем.

Актуальные тренды в сегменте fashion retail

Мы проанализировали десятки зарубежных изданий, пишущих об электронной коммерции и добавили собственный опыт (наша команда работает над инструментом персонализации REES46, сейчас как раз готовимся к интеграции с парой российских ecommerce-платформ в этом сегменте).

Вот что сейчас модно в интернет-магазинах одежды и обуви:

1. Инновационная презентация продукта. Недавно писали об этом, если коротко — приветствуется любой нестандартный и креативный способ подачи товара. Улыбающиеся жизнерадостные модели вместо вощеных моделей-кукол — хорошая находка для магазина в среднем ценовом сегменте.

2. Вращение товара на 360 градусов. Пользователя пытаются максимально приблизить к реалиями офлайн-точки: ботинок всегда хочется покрутить в руках.

6

3. Эффект “лупы”. Уже классический прием, однако не теряющий актуальности. Предъявляет требования к фотоконтенту — фотографии должны быть качественными, профессиональными и в высоком разрешении.

4. Виртуальная примерочная. Явление существует как в виде меняющихся картинок поверх загруженной фотографии пользователя, так и в виде полноценного сервиса с привлечением веб-камеры. Пользователь может буквально “примерять” одежду на свою видео-проекцию (хотя существующие сервисы далеки от совершенства).

2

На скриншоте: виртуальная примерочная LookWish

5. Луки. Всегда хочется знать, как та или иная вещь будет смотреться в сочетании с другими. Кроме того, такой рекомендательный механизм помогает набить корзину пользователя другими товарами из лука. Работающий кросс-сейл в чистом виде.

6. Видеолуки. Еще способ продемонстрировать, как одежда сидит на фигуре.

7

7. Состав и способы ухода. Перед покупкой пользователь должен узнать об этом платье все: сколько в нем процентов натуральной шерсти, как его стирать и гладить. Добавление такой информации к товару повышает шансы на завершенную покупку.

8. Таблица размеров. Эпопея с размерами — это больная мозоль fashion-ритейла, но об этом позже. Простая таблица соответствий размеров помогает пользователю принять правильное решение.

9. Характеристики модели на фото. Это пальто хорошо сидит на девушке с сайта, вопросов нет. Укажите ее рост и размеры, дабы не вводить пользователей в заблуждение.

10. Ориентация на миллениалов. Так называемое “поколение Y”, родившееся в 80-х и 90-х имеет характерную черту: они технически подкованы и склонны долго не расставаться с детством. Эту черту можно смело эксплуатировать, тем более, что нынешние миллениалы уже давно стали платежеспособным сегментом.

11. Расширение функций мобильных приложений. Удобная покупка из приложения — хороший бонус для бизнеса. Особенно учитывая предыдущий пункт.

12. Использование BigData. Последние лет пять маркетологи настойчиво повторяют эту мантру, однако приносить реальные плоды бизнесу BigData начала относительно недавно. Анализ пользователей по сотням параметров, построение моделей, выводы на основе связей с другими пользователями — сложные математические формулы, которые в итоге дает вполне конкретный результат: магазин может рекомендовать пользователю именно то, что понравится ему. Быть этаким предсказателем с очень малой погрешностью.

13. Персонализация контента. Подразумевает вывод уникального контента везде: в товарных рекомендациях, баннерной рекламе, рекомендуемых статьях, даже почтовых и SMS-рассылках. Так, согласно исследованию, около 59% пользователей заявляют, что на персонализированных сайтах проще найти нужное. А 56% чаще возвращаются на сайт, который предлагает персонализированные рекомендации.

3

Источник инфографики: invesp.com

14. Сегментация контента по погоде. Уникальная особенность интернет-магазинов одежды и обуви. На улице дождливо и холодно уже неделю — невольно задумаешься о покупке шарфа или перчаток.

15. Использование последних технологий. Хотя подобные внедрения часто напоминают смелые эксперименты, их факт нельзя отрицать. Технологии — это iBeacon, Oculus Rift, носимые гаджеты, 3D-принтеры.


Например, Chico’s, магазин одежды для женщин за 30, установил в своих офлайн-точках интерактивные столы, которые позволяют посмотреть товары “не в наличии”. Также компания использует iBeacon-маячки, чтобы предупреждать пользователей специального приложения о близости магазина.


16. Переход онлайн-магазинов в офлайн. Яркий пример — магазин косметики BirchBox. Это очень закономерный шаг, онлайн-бизнес старается следовать философии омниканальных продаж — когда пользователь получает возможность взаимодействовать с магазином удобным ему способом: через сайт, колл-центр, “физический” филиал и т.д., при этом информация синхронизируется и не теряется.

45

17. Социальные сети как платформа продаж. Еще пять лет назад попытки продавать в социальных сетях особым успехом не отличались. Сегодня мы видим массу любопытных примеров: стоит вспомнить недавний кейс IKEA с их каталогом в Instagram. Для fashion-индустрии эта схема тоже выглядит вполне рабочей — тем более, развитию f-commerce, “социальной коммерции”, потворствуют сами социальные сети: так Facebook внедрил кнопку “купить”, а благодаря разработке Like2Buy Instagram перестал быть только платформой для продвижения брендов.

С тенденциями понятно, однако у индустрии есть ряд вполне ощутимых проблем, которые по сей день не решены (или решены частично).

Проблемы e-commerce сайтов сегмента одежды и обуви

Большая часть проблем связана именно с персонализацией витрины и механизмами рекомендаций. Дело в том, что модный сегмент в принципе очень специфичен: рекомендовать телевизоры и рекомендовать босоножки — это вообще небо и земля. В первом случае выбор чисто рациональный: система анализирует, что пользователю интересны плазменные панели не менее такой-то диагонали и рекомендует аналоги. Во втором случае вся собранная аналитика может вдруг оказаться бесполезной — сейчас попытаемся раскрыть причины сложностей. 

Проблема меняющихся трендов. Ваша рекомендательная система долго собирала информацию и выводила закономерности, и только она решила порекомендовать девушке вот этот клатч — как вдруг случилась очередная неделя высокой моды и такие клатчи оказались аутсайдерами из “старой коллекции”. Грубый пример, но суть передает. Современная рекомендательная система должна уметь адаптироваться под динамично меняющиеся условия.


У рекомендательной системы есть два разных «уровня», на которых она должна работать: а) глобальные оценки, медленно меняющиеся особенности и предпочтения, интересные страницы, зависимость от user features (география, пол etc.) и т.д. и б) кратковременные тренды, hotness, быстрые изменения интереса во времени.

Сергей Николенко, основатель Surfingbird


Почти 100% смена ассортимента от сезона к сезону. Вряд ли какая-то другая отрасль может пожаловаться на полную смену товарных позиций и SKU в каталоге. Ну, разве что шинные магазины. Это снова создает определенные требования к механизму рекомендаций.

Потребность в уникальном отраслевом алгоритме. Без него в рекомендациях мужчинам могут появиться дамские трусики, и абсолютно всем магазин может начать советовать одежду неподходящего размера. Во вкусе пользователей, но на три размера больше, например. Тут нужна тонкая настройка на определенные SKU — и звучит это проще, чем обстоит на деле.

Очевидно, что рекомендовать одежду неподходящего размера бесполезно: это приведет к снижению эффективности рекомендательной системы и бизнеса в целом. Поэтому в сегменте онлайн-ритейла одежды работает особый отраслевой алгоритм. Он определяет пол и физиологические особенности покупателя и устраняет из рекомендаций товары, которые покупатель никогда не купит.

Проблема холодного старта. Когда система получает нового пользователя, она не может эффективно рекомендовать товары. Аналогично с новыми товарами — когда по ним нет никакой статистики, их сложно рекомендовать. Эти моменты система должна уметь “обходить”, например, рекомендуя новые товары в принудительном порядке, дабы измерить реакцию пользователей и накопить информацию к анализу.


 В магазине ShoeDazzle проблему решили довольно изящно: новым пользователям предлагается ответить на несколько вопросов с вариантами ответов. Полученные данные ложатся в основу первичных рекомендаций. В будущем рекомендательный алгоритм усложняется, исходя из поведения пользователя на сайте, его покупок и т.д.


Меняющиеся предпочтения. Cегодня я ищу кроссовки для тренировок, завтра зимние классические ботинки, потом туфли в подарок маме - в итоге система может иметь довольно спутанные представления о моих вкусах. Например, станет рекомендовать женские вещи, как в примере ранее. Лечится анализом социального графа, однако, не всегда на сайтах предусмотрена авторизация через соцсети.


 Согласно статистике, 88% магазинов, использующих данные социального графа, признают повышение эффективности рекомендательных механизмов.


Проблема непредсказуемости. Некоторые случаи пользовательского поведения вообще слабо поддаются анализу и построению каких-либо выводов на основе таких данных. Например, одному человеку может нравиться и Metallica, и фолковые The Dubliners — в этом случае рекомендательные алгоритмы музыкального сервиса, вероятно, будут анализировать контрастные предпочтения независимо друг от друга. Если уходить в терминологию, здесь будет работать коллаборативная фильтрация, а не схожесть характеристик. В случае с fashion-сегментом тоже возможны подобные случаи.

Проблема с неподходящим размером. Эта проблема не касается персонализации, но очень существенно бьет по ритейлеру. Дело в том, что в магазинах с услугой примерки вещей пользователи часто заказывают несколько размеров сразу (чтобы потом вернуть те, что не подошли). Для магазина это колоссальные упущенные выгоды, так как товары отсутствуют на складе все время примерки. Плюс затраты на транспортировку. Проблему пытаются решить с помощью означенных выше онлайн-примерочных или более простыми способами: отзывами и таблицами размеров.

В заключение хотелось бы сказать, что персонализация — действительно мощный инструмент повышения продаж, а чем сложнее специфика бизнеса, тем интереснее находить под них программные решения.

Всех fashion-ритейлеров поздравляем с наступившим весенним сезоном. Продаж вам и правильных рекомендаций вашим пользователям!

Материал по теме

Эмодзи, мемы и живой диалог: какого общения ждут ваши покупатели

Материал по теме

Авито запускает аналитику спроса для онлайн-продавцов

Материал по теме

"Иль де Ботэ" сокращает сроки доставки в регионы

Подписаться на новости

Смотрите также

current-theme

Новая эра брендинга: Как преуспеть в эпоху экономического нигилизма поколения Z

current-theme

Бизнес увеличивает инвестиции в продвижение интернет-магазинов: аналитика Яндекса

current-theme

Lamoda анонсировала ребрендинг и расширение ассортимента в 2025 году

current-theme

Retail media: как и почему растут продажи рекламы у ритейлеров

current-theme

Перформанс-реклама для фешен-брендов подорожала почти в 2 раза

current-theme

Ключевые метрики E-Retail Media: как оценить эффективность рекламы?

current-theme

Маркетинг для eCommerce в условиях высокой ключевой ставки: как сохранить позиции и подготовиться к росту

current-theme

Тренды продвижения в соцсетях: прогнозы на 2025 год

current-theme

Брендформанс: новый тренд в онлайн-маркетинге

current-theme

Как запустить рассылку бонусов на Ozon и достичь 1650% ROI

current-theme

Коварная метрика: Как Amazon получил колоссальные убытки от "умных устройств"

current-theme

С начала 2023 года закупка трафика в eСommerce подорожала на 26%, стоимость конверсии - на 33%: аналитика

Актуальное сейчас

Эмодзи, мемы и живой диалог: какого общения ждут ваши покупатели

65% россиян считают, что тон коммуникации влияет на восприятие компании. Более половины опрошенных (54%) хотят, чтобы бренды общались дружелюбно и человечно, 24% предпочитают формальный стиль, а 18% - кратк...

57% россиян заказывают доставку для близких несколько раз в месяц

Сервис доставки "Купер" и "СберМобайл" выяснили, как россияне используют онлайн-сервисы для заботы о близких. По данным опроса, 57% респондентов заказывают доставку родным несколько раз в месяц, а 96% считают ц...

Авито запускает аналитику спроса для онлайн-продавцов

Авито представил бесплатный аналитический инструмент для оценки спроса на товары. Сервис позволит продавцам определять перспективные ниши, анализировать тренды и корректировать ассортимент перед запуском би...

Amazon развивает сервис быстрой доставки продуктов в городах Великобритании

Amazon запустил сервис 15-минутной доставки продуктов питания в ряде городов Великобритании, заключив национальное партнёрство с сервисом мгновенной доставки GoPuff. После успешного тестирования в ма...

"Иль де Ботэ" сокращает сроки доставки в регионы

Бьюти-ритейлер "Иль де Ботэ" (ИДБ) внедряет новую логистическую систему, которая позволит доставлять заказы клиентам в регионах за 1–2 дня вместо прежних пяти и более. Это особенно актуально для городов, гд...

А ты кто такой? Как вы теряете клиентов из-за проблем с идентификацией

Аналитическая компания Elephant опубликовала отчет "Кризис идентификации: невидимый барьер для роста глобального eCommerce", который выявляет ключевые препятствия для развития онлайн-торговли. Основная ...

Согласие на обработку персональных данных

×

Физическое лицо, оставляя заявку на веб-сайте e-pepper.ru через форму подписки на e-mail рассылку, действуя свободно, своей волей и в своем интересе, а также подтверждая свою дееспособность, предоставляет свое согласие на обработку персональных данных (далее — Согласие) Обществу с ограниченной ответственностью «МАКС ТЕХНОЛОДЖИ» (ООО «МАКС ТЕХНОЛОДЖИ») (ИНН 7701370771), которому принадлежит веб-сайт e-pepper.ru и которое зарегистрировано по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4, на обработку своих персональных данных со следующими условиями:

  1. Данное Согласие дается на обработку персональных данных, как без использования средств автоматизации, так и с их использованием.
  2. Согласие дается на обработку следующих моих персональных данных: персональные данные, не относящиеся к специальной категории персональных данных или к биометрическим персональным данным: адрес электронной почты (e-mail); имя; сведения о месте работы; номер мобильного телефона.
  3. Цель обработки персональных данных: обсуждение возможного проекта.
  4. В ходе обработки с персональными данными будут совершены следующие действия: сбор; запись; систематизация; накопление; хранение; уточнение (обновление, изменение); извлечение; использование; передача (предоставление, доступ); блокирование; удаление; уничтожение.
  5. Персональные данные обрабатываются в течение 30 дней с момента отказа в дальнейшем обсуждении проекта или с момента принятия решения о заключении договора на проект в соответствии с ч. 4 ст. 21 152-ФЗ, смотря что произойдет раньше.
  6. Согласие может быть отозвано вами или вашим представителем путем направления ООО «МАКС ТЕХНОЛОДЖИ» письменного заявления, по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4.
  7. В случае отзыва вами или вашим представителем Согласия ООО «МАКС ТЕХНОЛОДЖИ» вправе продолжить обработку персональных данных без него при наличии оснований, указанных в пунктах 2 — 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона № 152-ФЗ «О персональных данных» от 27.07.2006 г.
  8. Настоящее согласие действует все время до момента прекращения обработки персональных данных, указанных в п. 6 и п. 7 Согласия.