Created by potrace 1.13, written by Peter Selinger 2001-2015 LOGO

Кейс персонализации интернет-магазина Shoes.ru: рост выручки на 18%

Игорь Бахарев
18 Августа 2015, в 10:48, в Новости e-commerce, в сюжете: Retail Rocket, рекомендательные сервисы

Кейс персонализации интернет-магазина Shoes.ru 1

В марте 2015 года было проведено тестирование сервиса товарных рекомендаций Retail Rocket на интернет-магазине Shoes.ru (магазин мужской и женской обуви культовых брендов).

Исследование эффективности работы сервиса проводилось с помощью механики А/Б-тестирования. Вся аудитория сайта случайным образом в реальном времени делилась на равные сегменты. Одному сегменту показывались товарные рекомендации Retail Rocket, другому — собственные рекомендации интернет-магазина. Идентификатор каждого сегмента посетителей передавался в систему Google Analytics.

Результаты пост-тест анализа

По данным Google Analytics, в тесте приняло участие порядка 57 000 пользователей в период с 27 февраля по 19 марта 2015 года. В рамках пост-тест анализа исследовалось влияние рекомендательной системы Retail Rocket на эффективность desktop-версии сайта shoes.ru (96% трафика интернет-магазина).

По полученным данным, система Retail Rocket дает рост среднего чека на 11,8%, конверсии на 6,9%, в выручке рост на 18,4%.

Кейс персонализации интернет-магазина Shoes.ru 2

Так же было проанализировано, как влияют товарные рекомендации на новых пользователей, которые составляют 58% всего трафика.

По полученным данным, система Retail Rocket дает рост среднего чека на 13,5%, конверсии на 12,8%, в выручке рост на 27,2%. В долгосрочной перспективе это даст еще больший рост продаж, так как помимо роста выручки, бизнес получает еще больше новых клиентов, которые будут совершать повторные покупки.

Кейс персонализации интернет-магазина Shoes.ru 3

Сценарии рекомендаций

Интернет-магазин Shoes.ru на время теста использовал 7 из 18 доступных сценариев рекомендаций сервиса Retail Rocket:

Главная страница

На главной странице были задействованы две механики:

  • Персональные рекомендации. В этом блоке с помощью специального алгоритма анализа интересов и поведения пользователя показываются товары, которые наиболее интересны именно тому пользователю, который их просматривает.
  • Рекомендации популярных товаров. В этом сценарии пользователям показываются самые популярные товары (по кликам, просмотрам, корзинам, заказам и другим событиям) из наиболее интересных им категорий. Используется жесткое дисконтирование по времени, чтобы отображать самое популярное в данный момент.

Кейс персонализации интернет-магазина Shoes.ru 4

Страница товарной категории

На странице товарной категории была внедрена механика «Самые востребованные товары внутри категории». Блок содержит наиболее востребованные предложения из тех, что имеются именно в той категории, где в данный момент находится пользователь. Разные сегменты аудитории получают разные бестселлеры на основе поведенческого анализа.

Кейс персонализации интернет-магазина Shoes.ru 5

Карточка товара

На странице карточки товара была задействована механика «Похожие товары в наличии». Блок установлен внизу страниц карточек товаров и рекомендует пользователям альтернативы из товаров, которые в данный момент можно купить в магазине. Удерживает часть посетителей, которые «доскролили» до конца страницы, но не заинтересовались текущим товаром. Механика помогает большей доле людей найти предложения, которые их с наибольшей вероятностью заинтересуют.

Кейс персонализации интернет-магазина Shoes.ru 6

Результаты внутреннего поиска

Для результатов внутреннего поиска была задействована механика «Поисковые рекомендации». Блок рекомендаций содержит товары, максимально подходящие к ключевому слову, которое пользователь запросил во внутреннем поиске по сайту. Показ поисковых рекомендаций особенно актуален, когда по поисковому запросу отсутствуют какие-либо результаты системы поиска:

Кейс персонализации интернет-магазина Shoes.ru 7

Корзина

Для увеличения среднего чека магазина на странице с составом заказа (корзина) была использована механика «Сопутствующие товары». Пользователю предлагаются товары, которыми он с наибольшей вероятностью заинтересуется и может дополнить свой заказ.

Кейс персонализации интернет-магазина Shoes.ru 8

Комментарий Константина Черникова, руководитель интернет-магазина Shoes.ru:

Константин Черников,  руководитель интернет-магазина Shoes.ru

«В прошлом году решили обратиться в компанию Retail Rocket для установки на сайте блока персональных рекомендаций. Это казалось бы простая задача, которую можно решить и самим, но на деле всегда лучше обращаться к профессионалам, которые умеют работать с большим объемом данных.
Результат налицо. Продажи выросли. Рекомендую эту компанию, как профессионального и качественного партнера в электронной торговле».

Комментарии к статье

comments powered by HyperComments