Кейс персонализации интернет-магазина Shoes.ru: рост выручки на 18%

Игорь Бахарев

Кейс персонализации интернет-магазина Shoes.ru 1

В марте 2015 года было проведено тестирование сервиса товарных рекомендаций Retail Rocket на интернет-магазине Shoes.ru (магазин мужской и женской обуви культовых брендов).

Исследование эффективности работы сервиса проводилось с помощью механики А/Б-тестирования. Вся аудитория сайта случайным образом в реальном времени делилась на равные сегменты. Одному сегменту показывались товарные рекомендации Retail Rocket, другому — собственные рекомендации интернет-магазина. Идентификатор каждого сегмента посетителей передавался в систему Google Analytics.

Результаты пост-тест анализа

По данным Google Analytics, в тесте приняло участие порядка 57 000 пользователей в период с 27 февраля по 19 марта 2015 года. В рамках пост-тест анализа исследовалось влияние рекомендательной системы Retail Rocket на эффективность desktop-версии сайта shoes.ru (96% трафика интернет-магазина).

По полученным данным, система Retail Rocket дает рост среднего чека на 11,8%, конверсии на 6,9%, в выручке рост на 18,4%.

Кейс персонализации интернет-магазина Shoes.ru 2

Так же было проанализировано, как влияют товарные рекомендации на новых пользователей, которые составляют 58% всего трафика.

По полученным данным, система Retail Rocket дает рост среднего чека на 13,5%, конверсии на 12,8%, в выручке рост на 27,2%. В долгосрочной перспективе это даст еще больший рост продаж, так как помимо роста выручки, бизнес получает еще больше новых клиентов, которые будут совершать повторные покупки.

Кейс персонализации интернет-магазина Shoes.ru 3

Сценарии рекомендаций

Интернет-магазин Shoes.ru на время теста использовал 7 из 18 доступных сценариев рекомендаций сервиса Retail Rocket:

Главная страница

На главной странице были задействованы две механики:

  • Персональные рекомендации. В этом блоке с помощью специального алгоритма анализа интересов и поведения пользователя показываются товары, которые наиболее интересны именно тому пользователю, который их просматривает.
  • Рекомендации популярных товаров. В этом сценарии пользователям показываются самые популярные товары (по кликам, просмотрам, корзинам, заказам и другим событиям) из наиболее интересных им категорий. Используется жесткое дисконтирование по времени, чтобы отображать самое популярное в данный момент.

Кейс персонализации интернет-магазина Shoes.ru 4

Страница товарной категории

На странице товарной категории была внедрена механика «Самые востребованные товары внутри категории». Блок содержит наиболее востребованные предложения из тех, что имеются именно в той категории, где в данный момент находится пользователь. Разные сегменты аудитории получают разные бестселлеры на основе поведенческого анализа.

Кейс персонализации интернет-магазина Shoes.ru 5

Карточка товара

На странице карточки товара была задействована механика «Похожие товары в наличии». Блок установлен внизу страниц карточек товаров и рекомендует пользователям альтернативы из товаров, которые в данный момент можно купить в магазине. Удерживает часть посетителей, которые «доскролили» до конца страницы, но не заинтересовались текущим товаром. Механика помогает большей доле людей найти предложения, которые их с наибольшей вероятностью заинтересуют.

Кейс персонализации интернет-магазина Shoes.ru 6

Результаты внутреннего поиска

Для результатов внутреннего поиска была задействована механика «Поисковые рекомендации». Блок рекомендаций содержит товары, максимально подходящие к ключевому слову, которое пользователь запросил во внутреннем поиске по сайту. Показ поисковых рекомендаций особенно актуален, когда по поисковому запросу отсутствуют какие-либо результаты системы поиска:

Кейс персонализации интернет-магазина Shoes.ru 7

Корзина

Для увеличения среднего чека магазина на странице с составом заказа (корзина) была использована механика «Сопутствующие товары». Пользователю предлагаются товары, которыми он с наибольшей вероятностью заинтересуется и может дополнить свой заказ.

Кейс персонализации интернет-магазина Shoes.ru 8

Комментарий Константина Черникова, руководитель интернет-магазина Shoes.ru:

Константин Черников,  руководитель интернет-магазина Shoes.ru

«В прошлом году решили обратиться в компанию Retail Rocket для установки на сайте блока персональных рекомендаций. Это казалось бы простая задача, которую можно решить и самим, но на деле всегда лучше обращаться к профессионалам, которые умеют работать с большим объемом данных.
Результат налицо. Продажи выросли. Рекомендую эту компанию, как профессионального и качественного партнера в электронной торговле».

Материал по теме

Искусственный интеллект научился угадывать точное время покупки конкретного товара в онлайне

Материал по теме

Дума готовит стоп-кран для рекомендательных сервисов

Материал по теме

Товарные рекомендации приносят 25% покупок в приложении "М.Видео"

Подписаться на новости

Актуальное сейчас

Getblogger: половина россиян ждет от блогеров промокоды к распродажам

Российская аудитория все чаще ждет от брендов не просто скидок, а вовлекающих форматов взаимодействия. Исследование Getblogger (входит в МТС AdTech) показало, что во время распродаж больше всего пользовател...

5Post запустил доставку заказа по клику из магазинов

Дочерняя компания X5 5Post запустила доставку заказа по клику из пункта выдачи. Покупатели сервиса 5Post теперь могут вызвать курьера прямо в магазин "Пятёрочка" или "Перекрёсток" после поступления туда зак...

Рейтинг качества доставки в 2025 году

Компания PIM Solutions представила рейтинг лучших предложений по доставке среди крупнейших российских интернет-магазинов. Исследование выявило явных лидеров в сфере логистики и клиентского сервиса. Победу в...

Как “Детский мир” переигрывает маркетплейсы: логистика, СТМ и гармоничный ритейл

В условиях жесткой конкуренции с маркетплейсами "Детский мир" делает ставку на собственную онлайн-платформу, гармоничное сочетание офлайна и eСommerce, а также развитие параллельных направлений - от зоотова...

Потребители проводят больше времени в интернет-магазинах

Российские покупатели стали проводить значительно больше времени в интернете за шопингом. Доля онлайн-покупателей, тратящих на это более четырех часов в неделю, достигла 40,4% в сентябре. С марта показатель...

Россияне готовятся тратить больше в Черную пятницу

Большинство россиян планируют участвовать в распродажах Черной пятницы в этом году. По данным компании Яндекс, 46% потребителей собираются делать покупки, а треть из них намерена потратить больше, чем в 202...

Согласие на обработку персональных данных

×

Физическое лицо, оставляя заявку на веб-сайте e-pepper.ru через форму подписки на e-mail рассылку, действуя свободно, своей волей и в своем интересе, а также подтверждая свою дееспособность, предоставляет свое согласие на обработку персональных данных (далее — Согласие) Обществу с ограниченной ответственностью «МАКС ТЕХНОЛОДЖИ» (ООО «МАКС ТЕХНОЛОДЖИ») (ИНН 7701370771), которому принадлежит веб-сайт e-pepper.ru и которое зарегистрировано по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4, на обработку своих персональных данных со следующими условиями:

  1. Данное Согласие дается на обработку персональных данных, как без использования средств автоматизации, так и с их использованием.
  2. Согласие дается на обработку следующих моих персональных данных: персональные данные, не относящиеся к специальной категории персональных данных или к биометрическим персональным данным: адрес электронной почты (e-mail); имя; сведения о месте работы; номер мобильного телефона.
  3. Цель обработки персональных данных: обсуждение возможного проекта.
  4. В ходе обработки с персональными данными будут совершены следующие действия: сбор; запись; систематизация; накопление; хранение; уточнение (обновление, изменение); извлечение; использование; передача (предоставление, доступ); блокирование; удаление; уничтожение.
  5. Персональные данные обрабатываются в течение 30 дней с момента отказа в дальнейшем обсуждении проекта или с момента принятия решения о заключении договора на проект в соответствии с ч. 4 ст. 21 152-ФЗ, смотря что произойдет раньше.
  6. Согласие может быть отозвано вами или вашим представителем путем направления ООО «МАКС ТЕХНОЛОДЖИ» письменного заявления, по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4.
  7. В случае отзыва вами или вашим представителем Согласия ООО «МАКС ТЕХНОЛОДЖИ» вправе продолжить обработку персональных данных без него при наличии оснований, указанных в пунктах 2 — 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона № 152-ФЗ «О персональных данных» от 27.07.2006 г.
  8. Настоящее согласие действует все время до момента прекращения обработки персональных данных, указанных в п. 6 и п. 7 Согласия.