Кейс персонализации интернет-магазина Shoes.ru: рост выручки на 18%

Игорь Бахарев

Кейс персонализации интернет-магазина Shoes.ru 1

В марте 2015 года было проведено тестирование сервиса товарных рекомендаций Retail Rocket на интернет-магазине Shoes.ru (магазин мужской и женской обуви культовых брендов).

Исследование эффективности работы сервиса проводилось с помощью механики А/Б-тестирования. Вся аудитория сайта случайным образом в реальном времени делилась на равные сегменты. Одному сегменту показывались товарные рекомендации Retail Rocket, другому — собственные рекомендации интернет-магазина. Идентификатор каждого сегмента посетителей передавался в систему Google Analytics.

Результаты пост-тест анализа

По данным Google Analytics, в тесте приняло участие порядка 57 000 пользователей в период с 27 февраля по 19 марта 2015 года. В рамках пост-тест анализа исследовалось влияние рекомендательной системы Retail Rocket на эффективность desktop-версии сайта shoes.ru (96% трафика интернет-магазина).

По полученным данным, система Retail Rocket дает рост среднего чека на 11,8%, конверсии на 6,9%, в выручке рост на 18,4%.

Кейс персонализации интернет-магазина Shoes.ru 2

Так же было проанализировано, как влияют товарные рекомендации на новых пользователей, которые составляют 58% всего трафика.

По полученным данным, система Retail Rocket дает рост среднего чека на 13,5%, конверсии на 12,8%, в выручке рост на 27,2%. В долгосрочной перспективе это даст еще больший рост продаж, так как помимо роста выручки, бизнес получает еще больше новых клиентов, которые будут совершать повторные покупки.

Кейс персонализации интернет-магазина Shoes.ru 3

Сценарии рекомендаций

Интернет-магазин Shoes.ru на время теста использовал 7 из 18 доступных сценариев рекомендаций сервиса Retail Rocket:

Главная страница

На главной странице были задействованы две механики:

  • Персональные рекомендации. В этом блоке с помощью специального алгоритма анализа интересов и поведения пользователя показываются товары, которые наиболее интересны именно тому пользователю, который их просматривает.
  • Рекомендации популярных товаров. В этом сценарии пользователям показываются самые популярные товары (по кликам, просмотрам, корзинам, заказам и другим событиям) из наиболее интересных им категорий. Используется жесткое дисконтирование по времени, чтобы отображать самое популярное в данный момент.

Кейс персонализации интернет-магазина Shoes.ru 4

Страница товарной категории

На странице товарной категории была внедрена механика «Самые востребованные товары внутри категории». Блок содержит наиболее востребованные предложения из тех, что имеются именно в той категории, где в данный момент находится пользователь. Разные сегменты аудитории получают разные бестселлеры на основе поведенческого анализа.

Кейс персонализации интернет-магазина Shoes.ru 5

Карточка товара

На странице карточки товара была задействована механика «Похожие товары в наличии». Блок установлен внизу страниц карточек товаров и рекомендует пользователям альтернативы из товаров, которые в данный момент можно купить в магазине. Удерживает часть посетителей, которые «доскролили» до конца страницы, но не заинтересовались текущим товаром. Механика помогает большей доле людей найти предложения, которые их с наибольшей вероятностью заинтересуют.

Кейс персонализации интернет-магазина Shoes.ru 6

Результаты внутреннего поиска

Для результатов внутреннего поиска была задействована механика «Поисковые рекомендации». Блок рекомендаций содержит товары, максимально подходящие к ключевому слову, которое пользователь запросил во внутреннем поиске по сайту. Показ поисковых рекомендаций особенно актуален, когда по поисковому запросу отсутствуют какие-либо результаты системы поиска:

Кейс персонализации интернет-магазина Shoes.ru 7

Корзина

Для увеличения среднего чека магазина на странице с составом заказа (корзина) была использована механика «Сопутствующие товары». Пользователю предлагаются товары, которыми он с наибольшей вероятностью заинтересуется и может дополнить свой заказ.

Кейс персонализации интернет-магазина Shoes.ru 8

Комментарий Константина Черникова, руководитель интернет-магазина Shoes.ru:

Константин Черников,  руководитель интернет-магазина Shoes.ru

«В прошлом году решили обратиться в компанию Retail Rocket для установки на сайте блока персональных рекомендаций. Это казалось бы простая задача, которую можно решить и самим, но на деле всегда лучше обращаться к профессионалам, которые умеют работать с большим объемом данных.
Результат налицо. Продажи выросли. Рекомендую эту компанию, как профессионального и качественного партнера в электронной торговле».

Материал по теме

Искусственный интеллект научился угадывать точное время покупки конкретного товара в онлайне

Материал по теме

Дума готовит стоп-кран для рекомендательных сервисов

Материал по теме

Товарные рекомендации приносят 25% покупок в приложении "М.Видео"

Подписаться на новости

Актуальное сейчас

Стоимость трафика в eСommerce растёт: как маркетплейсы борются за клиентов и оптимизируют рекламу

Стоимость привлечения клиентов в российском eCommerce снова растёт: за третий квартал 2025 года средняя цена трафика увеличилась на 6,5%. Аналитики E-Promo Group связывают это с усилившейся конкуренцией за вним...

Прогноз MAR CONSULT: К 2035 году eСommerce будет продавать качество цифровой связи с потребителем

Аналитическая компания MAR CONSULT и её основатель Дмитрий Шиманов спрогнозировали, как технологии и ИИ изменят онлайн-торговлю и потребительское поведение в ближайшие десять лет. Цифровой аватар ...

Онлайн-чеки в супермаркетах вдвое превысили офлайн

Российский рынок электронной торговли демонстрирует рост средних чеков. Это следует из данных анализа операций по картам банка Русский Стандарт за три квартала 2025 года. Покупатели в онлайн-сегменте суперм...

СДЭК вывел первых клиентов на маркетплейс Fatio в ОАЭ

СДЭК Фулфилмент организовал первую поставку клиентских товаров на маркетплейс Fatio в ОАЭ. Компания выстроила полный цикл услуг: приемку, хранение, сборку, упаковку и доставку до площадки. Такой формат дал ...

Недостоверные описания, брак и подделки: что раздражает россиян в интернет-магазинах

Опрос Центра изучения потребительского поведения (ЦИПП) Роскачества показал, с какими проблемами чаще всего сталкиваются россияне при онлайн-покупках. Чаще всего покупатели жалуются, что товар не соответств...

Онлайн-присутствие становится условием доверия покупателей

Онлайн-присутствие становится для покупателей неотъемлемой частью продукта. Свежие данные коммуникационного агентства PR Perfect показывают, что 74% россиян не готовы доверять компаниям, о которых невозможн...

Согласие на обработку персональных данных

×

Физическое лицо, оставляя заявку на веб-сайте e-pepper.ru через форму подписки на e-mail рассылку, действуя свободно, своей волей и в своем интересе, а также подтверждая свою дееспособность, предоставляет свое согласие на обработку персональных данных (далее — Согласие) Обществу с ограниченной ответственностью «МАКС ТЕХНОЛОДЖИ» (ООО «МАКС ТЕХНОЛОДЖИ») (ИНН 7701370771), которому принадлежит веб-сайт e-pepper.ru и которое зарегистрировано по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4, на обработку своих персональных данных со следующими условиями:

  1. Данное Согласие дается на обработку персональных данных, как без использования средств автоматизации, так и с их использованием.
  2. Согласие дается на обработку следующих моих персональных данных: персональные данные, не относящиеся к специальной категории персональных данных или к биометрическим персональным данным: адрес электронной почты (e-mail); имя; сведения о месте работы; номер мобильного телефона.
  3. Цель обработки персональных данных: обсуждение возможного проекта.
  4. В ходе обработки с персональными данными будут совершены следующие действия: сбор; запись; систематизация; накопление; хранение; уточнение (обновление, изменение); извлечение; использование; передача (предоставление, доступ); блокирование; удаление; уничтожение.
  5. Персональные данные обрабатываются в течение 30 дней с момента отказа в дальнейшем обсуждении проекта или с момента принятия решения о заключении договора на проект в соответствии с ч. 4 ст. 21 152-ФЗ, смотря что произойдет раньше.
  6. Согласие может быть отозвано вами или вашим представителем путем направления ООО «МАКС ТЕХНОЛОДЖИ» письменного заявления, по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4.
  7. В случае отзыва вами или вашим представителем Согласия ООО «МАКС ТЕХНОЛОДЖИ» вправе продолжить обработку персональных данных без него при наличии оснований, указанных в пунктах 2 — 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона № 152-ФЗ «О персональных данных» от 27.07.2006 г.
  8. Настоящее согласие действует все время до момента прекращения обработки персональных данных, указанных в п. 6 и п. 7 Согласия.