Машинное обучение поможет селлерам Ozon спрогнозировать спрос
Игорь Бахарев
Для разработки отчета инженеры Ozon использовали модели машинного обучения, которые составляют прогноз на основе большого количества параметров: спрос клиентов, сезонность, цена товара и его скидка в рамках акции, остатки на складах, товары в пути и в запланированных поставках. Отдельно в прогнозе учитываются продажи в праздничные дни и во время распродаж, когда спрос на определенные товары повышается. Чтобы корректнее спрогнозировать прирост спроса и не завышать его, модель учитывает исторические продажи и динамику, которая была на похожие периоды в прошлом.
Продавец сможет получить отчет по любому товару, у которого была хотя бы одна продажа в течение 6 месяцев, а для сезонных новинок – даже без наличия продаж (будут учитываться данные по товарам-аналогам). На текущий момент доступны прогнозы на 10 недель вперед: этого должно хватить, чтобы скорректировать свою работу и запланировать будущие поставки на склад. Отчет доступен в личном кабинете, а узнать подробнее о нем можно в Базе знаний.
В дополнении Ozon запустил для продавцов отчет Оборачиваемость товаров. Он отражает детальную аналитику по скорости продажи как конкретного товара, так и магазина в целом. Отчет показывает: сколько товаров осталось и в каких регионах, сколько штук продается ежедневно и через сколько дней закончатся текущие товары на складах. Также появился показатель оборачиваемости магазина продавца - это средний прогноз по срокам продаж товаров. Чем показатель выше, тем дольше позиции будут лежать на складе. С новым отчетом можно просто корректировать ассортиментную матрицу и проще строить стратегию развития бизнеса. Продавцы могут объединять данные из отчетов, чтобы обращать внимание на спрос самых оборачиваемых товаров.
Подписаться на новости
Прочитаете,
когда вам будет удобно
Свежий дайджест из мира
eCommerce у вас в почте