Как получить результат от анализа данных в ритейле: несколько кейсов

Игорь Бахарев

Качественная работа с данными позволяет ритейлу принимать более качественные решения, сокращать затраты и повышать эффективность. Руководитель группы бизнес-анализа департамента аналитических решений "КОРУС Консалтинг" Константин Шабалин приводит несколько примеров, в которых корректно спроектированная BI-система помогала ритейлерам решать сложные задачи и повышать KPI сотрудников. 

Часто ритейлеры пытаются справиться с возникшими задачами – просчитать затраты в логистике или нужное количество штата, провести распродажу – при помощи только экспертизы своих сотрудников. При этом за время работы они накапливают большое количество данных, которые могли бы помочь им решить эти вопросы гораздо точнее и быстрее.

Представляю вашему вниманию несколько кейсов удачной работы с данными.

Кейс 1: что выгоднее – собственная техника или транспортная компания

Региональная продуктовая сеть класса дискаунтер каждый день перевозит товары из распределительного центра (РЦ) в торговые точки. При этом компания работает с большим количеством магазинов и РЦ и хочет сократить ежедневные затраты на логистику при помощи BI-системы.

Стоимость перевозок может быть разной. Это зависит от ряда факторов – задействованы ли собственные водители, есть ли техники по обслуживанию автомобилей в штате, собственные ли автомашины. В настоящий момент в компании перевозками занимается внешняя транспортная компания.

Можно решить, что самый эффективный вариант с точки зрения затрат – это купить собственный транспортный парк и нанять водителей. В этом случае ритейлер не платит стороннему оператору. Однако стоимость доставки сильно зависит от ее "плеча", и чем дальше магазин находится от РЦ, тем эффективнее именно привлеченный транспорт, так как удобнее выстраивать смены водителей. Со своим автопарком придется делать несколько "ходок", а с длинным "плечом" работает одна смена, о времени простоя которой можно не волноваться.

111.png

На решение также влияют изменяющиеся тарифы на перевозку, нестабильный грузопоток, который зависит от продаж в магазинах, появление новых торговых точек и РЦ. Транспортная сеть постоянно перестраивается, и решение по конкретному маршруту может меняться чуть ли не каждую неделю. Как в этой ситуации решить, свой или чужой транспорт будет эффективнее?

BI-система помогла ритейлеру регулярно собирать все данные о транспортных сетях. На основании этой информации логисты смогли заняться решением математической задачи, которая сводится к двумя цифрам – стоимости работы с собственным автопарком и стоимости работы с внешним подрядчиком. Итого, сравнивая две цифры, компания принимает взвешенное решение, которое легко можно обосновать.

Кейс 2: как решить, сколько человек нужно в штате магазина

Cети супермаркетов и магазинов у дома необходимо было решить вопрос со штатным расписанием торговых точек. Обычно количество персонала напрямую связывается с объемом продаж конкретного магазина: чем больше товаров продается, тем больше сотрудников - мерчандайзеров, кладовщиков, кассиров - там нужно.

Решение о количество штата в торговой точке обычно принималось руководством на общей встрече, где присутствовали представители различных подразделений – от HR-службы до финансового и операционного департаментов. На основании того, в каком магазине сколько продаж было в последнее время, они определяли, нужно ли менять расписание.

222.png

Тут есть риск: можно решить, что, если у торговой точки упали продажи, надо сразу сокращать персонал, чтобы уменьшить расходы и вернуться на уровень нужной маржинальности. При этом меньшее количество персонала ведет к понижению уровня обслуживания, что приводит к оттоку части клиентов. Продажи снова падают, штат снова сокращают.

Чтобы избежать такой ситуации, руководство решило обратиться к данным. В рамках BI-системы мы создали единую информационную панель, предназначенную для этого совещания. На дашборде по каждому магазину можно посмотреть статистику за длительный срок и корреляцию между персоналом и продажами. Туда же добавлена информация о внешних факторах, влияющих на магазин, в том числе о конкурентных торговых точках, расположенных рядом.

На основании полной информации комитет, встречающийся на этих заседаниях, может принимать взвешенные решения о снижении или росте штата.

Кейс 3: как успешно провести распродажу в fashion-ритейле

Сеть fashion-ритейла в сегменте lux брендов проводила кампании распродаж и промоакций. При планировании скидок и распродаж компании нужно было четко понимать финансовый результат.

В сегменте fashion-ритейла есть особенность: коллекция закупается заранее и в валюте. Поэтому, когда принимается решение о распродаже, нужно единовременно иметь на руках всю информацию: стоимость коллекции на данный момент в валюте, стоимость коллекции на момент покупки в валюте, пересчет в рубли, а также рублевую и валютную маржу.

Если не продать текущую коллекцию, не будет оборотных средств для покупки следующей, а если продать текущую коллекцию по невыгодным для ритейлера условиям, может не хватить оборотных на новую. При этом надо держать в голове, что текущую коллекцию покупали по одному курсу, следующую будут покупать по-другому. А чтобы сделать скидку, нужно видеть всю стоимость в рублях.

333.png

Вся эта информация, собранная и представленная в одном месте, помогает коммерческому директору принять решение об оптимальной сумме скидки. Для этого мы создали BI-инструмент, в котором данные видны на одном экране. Они ежедневно пересчитываются в автоматическом режиме. Таким образом, в любой момент можно принять правильное решение о распродаже, которое основывается на данных.

Почему данные есть, а пользы – нет

Даже красивые отчеты и дашборды иногда не помогают компании достичь целей, а менеджеру заслужить премию. Так происходит, когда отчет содержит статистику, не привязанную к действиям самого сотрудника. Как если бы в машине вместо спидометра выводилось количество штрафов за превышение скорости. Пользователь вынужден додумывать эту связь и искать самостоятельно дополнительную информацию, на что почти никогда нет времени. Поэтому даже если такой отчет и смотрят, то реального влияния на бизнес он не оказывает.

Чтобы получать пользу от BI-системы, данные в ней должны быть представлены в максимально готовом виде. Иными словами, однозначно подтверждать\опровергать гипотезу или призывать к четкий действиям. Чтобы отчет для ритейлера был таким, перед автоматизацией нужно ответить на вопросы:

·         Что именно я хочу видеть на дашборде BI-системы? Какие данные в отчете мне нужны, чтобы принять правильное решение?

·         Как мы собираемся с помощью этой информации принимать решение? Что именно заставит меня выбрать один из вариантов действий?

·         Зачем нужен для решения этой задачи BI-инструмент? Как его наличие изменит процесс принятия решений? Какой показатель улучшится?

Из ответов на эти вопросы выстраивается цепочка: "данные призывают к действию, действие дает результат". Как в примере с машиной: спидометр показывает, что я превышаю разрешённую скорость, я нажимаю не педель тормоза и не получаю штраф.

Другой секрет состоит в том, чтобы нужные данные оказались у правильного человека и позволили решить его рабочую проблему в персональной зоне ответственности. Например, показывать HR-директору данные по неэффективности логистики бесполезно, так как это не связано с его KPI. Но если дать ему понятный инструмент, который позволит снизить текучесть или ускорить подбор, то он будет пользоваться им без дополнительной мотивации и контроля.

Чтобы данные были полезны бизнесу, нужно посмотреть на них с точки зрения пользователей. Обрисовать картину - кто, какие задачи и где пытается решить, чего хотят акционеры или руководитель, что конкретно нужно улучшить, и в идеале – какой KPI поднять.

И после этого вы поймете, как это делать и что нужно отразить в отчете BI-системы. Дальше - дело техники.

Материал по теме

Блогеры в кризисе: как партнерский маркетинг стал спасением для инфлюэнсеров

Материал по теме

Онлайн стал важным драйвером рынка бьюти: аналитика "Чек Индекс"

Материал по теме

Retail Media в России: как рекламный рынок будущего вырос в 300 раз за 5 лет

Подписаться на новости

Актуальное сейчас

Как защитить свой товар от подделок на маркетплейсах

Рынок e-commerce растет стремительно, покупатель уходит в онлайн, маркетплейсы расширяют географию и развивают службы доставки. По данным Mediascope, Data Insight, АКИТ, аудитория российского онлайн рынка со...

Экспресс-доставка набирает обороты: россияне чаще заказывают технику и одежду с доставкой за час

Спрос на экспресс-доставку товаров за 1-2 часа в России продолжает расти, причем наибольшая активность покупателей приходится на промежуток между 12:00 и 13:00. Такие данные приводит Яндекс Маркет, отмечая,...

50% покупетелей общаются только через онлайн-звонки и чаты: аналитика Авито

Почти половина пользователей онлайн-платформ предпочитает совершать сделки, не покидая защищенной среды маркетплейсов. Согласно исследованию Авито, 50% россиян общаются с продавцами и покупателями исключите...

"Яндекс" покупает Boxberry

"Яндекс" объявил о покупке службы доставки Boxberry. Сделка направлена на расширение логистических возможностей и укрепление позиций на рынке электронной коммерции. В результате интеграции сервисы "Яндекс Д...

Налоговая начала проверки пунктов выдачи заказов маркетплейсов

Федеральная налоговая служба начала масштабные проверки пунктов выдачи заказов (ПВЗ) Wildberries и Ozon. Инспекторы, как следует из многочисленных писем, которые приходят владельцам ПВЗ, сосредоточатся на в...

Wildberries привлекла сотрудников из КНДР для работы на складе в Подмосковье

На складе маркетплейса Wildberries в подмосковной Электростали появились работники из Северной Кореи. По данным нескольких источников, с 14 апреля к работе приступили 180 граждан КНДР, преимущественно молод...

Согласие на обработку персональных данных

×

Физическое лицо, оставляя заявку на веб-сайте e-pepper.ru через форму подписки на e-mail рассылку, действуя свободно, своей волей и в своем интересе, а также подтверждая свою дееспособность, предоставляет свое согласие на обработку персональных данных (далее — Согласие) Обществу с ограниченной ответственностью «МАКС ТЕХНОЛОДЖИ» (ООО «МАКС ТЕХНОЛОДЖИ») (ИНН 7701370771), которому принадлежит веб-сайт e-pepper.ru и которое зарегистрировано по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4, на обработку своих персональных данных со следующими условиями:

  1. Данное Согласие дается на обработку персональных данных, как без использования средств автоматизации, так и с их использованием.
  2. Согласие дается на обработку следующих моих персональных данных: персональные данные, не относящиеся к специальной категории персональных данных или к биометрическим персональным данным: адрес электронной почты (e-mail); имя; сведения о месте работы; номер мобильного телефона.
  3. Цель обработки персональных данных: обсуждение возможного проекта.
  4. В ходе обработки с персональными данными будут совершены следующие действия: сбор; запись; систематизация; накопление; хранение; уточнение (обновление, изменение); извлечение; использование; передача (предоставление, доступ); блокирование; удаление; уничтожение.
  5. Персональные данные обрабатываются в течение 30 дней с момента отказа в дальнейшем обсуждении проекта или с момента принятия решения о заключении договора на проект в соответствии с ч. 4 ст. 21 152-ФЗ, смотря что произойдет раньше.
  6. Согласие может быть отозвано вами или вашим представителем путем направления ООО «МАКС ТЕХНОЛОДЖИ» письменного заявления, по адресу 115114, Москва, 1-й Павелецкий проезд, 1/42к2, помещение 1а/2п, офис 4.
  7. В случае отзыва вами или вашим представителем Согласия ООО «МАКС ТЕХНОЛОДЖИ» вправе продолжить обработку персональных данных без него при наличии оснований, указанных в пунктах 2 — 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона № 152-ФЗ «О персональных данных» от 27.07.2006 г.
  8. Настоящее согласие действует все время до момента прекращения обработки персональных данных, указанных в п. 6 и п. 7 Согласия.